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EIectroabsorption (Stark) spectroscopy, the study of the 
effects of externally applied electric fields on the shapes of 
absorption bands,1-3 is a powerful probe of the electronic 
redistribution that occurs upon charge-transfer excitation in a 
donor—acceptor molecule or complex. Boxer and colleagues4-6 

have recently applied the technique of electroabsorption spec­
troscopy to Ru"(NH3)5L with L = pyrazine and 4,4'-bipyridine 
complexes and to their binuclear mixed-valence counterparts, 
and Reimers and Hush have attempted to model the results.78 

While the earlier work revealed significant dipole-moment 
changes between the ground- and excited-state complexes, the 
values determined experimentally were systematically smaller 
than those predicted by simple models and the set of complexes 
studied was limited. Here we report results for metal-to-ligand 
charge transfer (MLCT) and ligand-to-metal charge transfer 
(LMCT) absorption bands of Ru(II) and Ru(III) complexes and 
show that the dipole-moment changes can be understood in 
terms of a two-state model which considers polarization, 
induced-dipole, and derealization effects. 

We have studied the pair of pyridyl-bound complexes Ru11-
(NH3)5L

2+ and Ru11^NH3)SL3+ with L = 4-aminopyridine.9 At 
77 K, in 50% aqueous glycerol glass, the Ru(II) complex 
exhibits MLCT absorption with Amax 389 nm (oscillator strength, 
fos = 0.18), while the Ru(III) complex exhibits LMCT absorp­
tion with ^max 493 nm (fos = 0.049). INDO SCF calculations10 
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on L - , L0, and L+ indicate both anion and cation radicals to be 
delocalized, with very similar negative charge centers 1.91 A 
from the ligating N atom. Thus, at a naive level of modeling, 
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the two transitions should exhibit equal, but opposite, dipole-
moment changes of 18.8 D since the Ru(II)-N and Ru(III)-N 
bond distances are essentially the same (2.00 A)."-12 Analysis 
of the electric-field dependences of the charge-transfer bands13 

yields/imA^obsd = -(8 ± 1) and +(18 ± 3) D for the MLCT 
and LMCT transitions, respectively, which corresponds to A/̂ bsd 
= —(6 ± 1) and +(14 ± 3) D after correction for the reduction 
of the external field in the medium.14 In contrast to the 
expectation, the measured values differ by a factor of 2 and 
even that for LMCT is smaller than predicted. To understand 
these observations, contributions to the dipole-moment change 
are now considered. 

Since the complexes are charged, their dipole moments are 
undefined. However, Afi = fit — fig, the difference between 
the excited- and ground-state dipole moments, is a meaningful 
quantity. Here a two-state model, in which the polarization of 
the ligand electrons by the metal center is included in the 
description of the localized (diabatic) ground and excited states, 
serves as a basis for discussion.15 For convenience, the metal 
center is taken as the origin of the coordinate system and, 
following a widely used definition, the direction of the dipole-
moment vector is from the negative to the positive charge. To 
predict the zero-order dipole-moment difference between the 
localized ground and excited states, a and b, we take, as model, 
a ligand (L+, L0, or L") with a 2+ or 3+ point charge placed 
2.00 A from the ligating (pyridyl) ligand for Ru(II) and Ru-
(III), respectively, and use an INDO SCF method to determine 
r-a and r-b, the distances between the point charge and the 
negative charge center of the ligand in the localized states.16 

The model is depicted below. 
The zero-order dipole-moment differences between the local­

ized ground and excited states are then obtained from eq 1, 
where n is the number of valence electrons in L (36 for 
4-aminopyridine). The values (/ib ~ /^a)W = —13.4 D and (jub 

(Mb ~ AO'ML = ~er- + ne(r_h) (la) 

(t*b ~ /O'LM = +er-' ~ (« " 1Mr-"' " r-') (lb) 

_
 HIYLM = 17.1 D are obtained. The first term in eq 1 is the 

product of a unit charge and the distance between the (oxidized) 
metal center and the negative center of the reduced ligand (L" 
for MLCT and L0 for LMCT). This term can be viewed as the 
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dipole-moment change A/*o due to the transferring electron. The 
value of IA1MoI, 18.5 D, calculated from eq 1 for both types of 
transitions may be compared with the value 18.8 D given above 
for the naive model. The second term in eq 1 reflects the 
response (polarization) of the remaining ligand valence electrons. 
This term will be denoted A^q and contributes 5.1 and -1.4 D 
to the MLCT and LMCT values, respectively. (Note that A^0 

and A q̂ have opposite signs.) The contribution of the second 
term is not negligible, particularly for the MLCT transition. 

As discussed by Reimers and Hush,7-8 the effect of the 
permanent dipoles of the NH3 ligands also needs to be 
considered: the NH3 ligands will induce dipoles (ji\) along the 
M-L axis that are of different magnitudes in the ground and 
excited states. We model this contribution to (jUb - fia) in terms 
of a point dipole approximation with the induced dipole centered 
at r°ab/2 where r°ab = | A1MrAI.18'19 This procedure yields 
A/^L = 4.2 D and A/^M = 1.9 D. Accordingly, the values of 
(«b - ,"a) calculated from eq 2 are - 9 and 19 D for the MLCT 
and LMCT transitions, respectively. 

(Mb ~ /Ocalcd = 4"O + A"q + A^1 (2) 

Finally, in order to compare the dipole-moment changes for 
the localized states calculated above with the measured dipole-
moment changes (for the adiabatic states), the derealization 
arising from the mixing of the localized ground and excited 
states (jr-back-bonding for the Ru(II) complex and jr-bonding 
for the Ru(III) complex) needs to be included. Employing 
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and A a = - 1 . 2 x ICT39 and - 0 . 5 7 x lO"3 9 C m W for MLCT and LMCT, 
respectively. The value of r°ab calculated from \&fio/e\ is 3.85 A for the 
MLCT and LMCT transitions. Note that the A a values are the polarizability 
differences between the adiabatic ground and excited states; the corre­
sponding quantities for the diabatic states will be more negative.22 Note 
further that the simple two-state model yields A a values that are always 
negative. Agreement with the experimental dipole-moment differences 
would be improved if A a were less negative, but would become poorer, 
particularly for the MLCT, as A a became positive. 
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values for the change in dipole moment, A,a0bSd, and for the 
transition dipole moment, fiit, determined in the spectroscopic 
studies, (Mb _ i«a)expti is calculated from eq 3.2021 The (Mb -

(Mb ~ ^aWi = [(A^ObSd)2 + 4(/<ge)
2]m (3) 

â)exPti values are -(10 ± 1) and (15 ± 3) D for the MLCT 
and LMCT transitions, respectively, in rather good agreement 
with the («b - /Ocaicd values.20'22 
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To summarize, the change in the charge of the metal center 
produced by charge-transfer excitation results in a change in 
ligand polarization which reduces the expected dipole-moment 
change. Here we have shown that including this effect, together 
with the effect of the permanent dipoles of the NH3 ligands, 
results in encouragingly good agreement with the predictions 
of a two-state model for MLCT and LMCT transitions. The 
parameter (ab

 - ,"a), the dipole-moment change for the diabatic 
states, is an important quantity: it is required, either directly or 
indirectly, for the calculation of electronic coupling elements 
(/fab) from spectroscopic parameters.1520 The coupling ele­
ments, in turn, are fundamental to interpreting the rates and 
distance dependence of a variety of electron transfer processes.15 

Detailed observations and applications to a range of systems 
will be reported in the near future. 
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